

2

CoCo~123 INFORMATION

CoCo~123 is the newsletter of the Glenside Color
Computer Club. Your annual contribution of $15.00
helps to keep our club going. Send your check to
Glenside Treasurer:

 George L Schneeweiss
 13450 N 2700 E Road
 Forrest IL 61741-9629

Our treasury provides newsletters and good times with
fellow CoCo users at our Annual "Last" Chicago
CoCoFEST! and Annual Glenside Picnic.

CoCo~123 CONTRIBUTIONS

If you have any suggestions for the newsletter or would
like to submit an article, please contact the CoCo~123
Newsletter editor:

 John Mark Mobley
 4104 Wren Lane
 Rolling Meadows IL 60008
 johnmarkmelanie@gmail.com

CONTRIBUTORS TO THIS ISSUE

 Richard Bair
 Kip Koon
 John Mark Mobley
 Tony Podraza
 Richard Goedeken
 George Schneeweiss
 Robert Swoger

G. C. C. C. MEETINGS

The Glenside Color Computer Club meets the second
Thursday of each month at the Schaumburg Township
District Library at 7:00 pm. If you need a map, see our
Glenside Homepage at:

http://glensideccc.com/splmap.html

A social get-together always follows the meeting at a
nearby restaurant, lovingly called, "The Meeting After".

FROM THE PRESIDENT'S PLATEN

Falling down is easier than getting up. That is a fact due
to gravity.

Growing older is a fact of life; growing up is optional.
For many of us in the CoCo world, growing up, with
respect of computing, may have been forced upon us
by the tools that we use at work and the tools that they
require to be used. Yet, we still gather together to share
ideas and show off our newest CoCo-related hardware
or software. There are all types of hardware that are
being used as peripherals for the CoCo. Indeed, the
6809 code has been ported to other platforms, and the
hardware that it uses is widely varied. But, at heart,
CoCo-ists are still young. We don't necessarily revel in
the CoCo...but there seems to be years disappearing
from our composure and visages whenever we see , "

Next year, Glenside will, once again, host a "Last"
Annual Chicago CoCoFEST! Twenty-five years running.
It is not Glenside that has kept the FEST! running, it is
you, those who drive countless hours, stay up until 5 in
the morning, soldering the last few boards to have them
to show off and, perhaps sell enough for enough gas
money to get back home; but most of all, endure all this
to enjoy a few moments in the company of others who
are also captivated by the microprocessor that has held
us in its grips for many years, some of us from the time
that we were not grown-ups....but then growing up is
optional.

Till next time, I bid you Peace.

Tony Podraza, President
Glenside Color Computer Club

TREA$URY NOTE$

We have $6020.34 in checking. We have 88 paid
members in 2014, down from 136 in 2011, and a total of
431 members to whom we send newsletters.

George Schneeweiss, Trea$urer
Glenside Color Computer Club

THE SECRETARY'S NOTEBOOK
--

Our gas meter in our garage blew up Nov 12, 2014. We
finally got back in the house in June after 7 grueling
months in an apartment. So please forgive me for not
contributing to the NL as I have been fighting the
insurance company to get re-reimbursed for all we lost.
I have spent weeks every day for 8 to 20 hours a day in
front of the computer to submit receipts to the insurance
company. I feel I’ll be at this until the end of November.
Thinking of you all. I pray I’ll see you at the next fest. I
must also thank the Glenside members for providing a
wonderful Annual Picnic at our home this year. I’m sure
you will get a nice report on the picnic in the Autumn
NL.

Bob Swoger, Secretary - rswoger@aol.com
Glenside Color Computer Club

3

THE EDITOR’S CLIPBOARD

I need help getting the newsletter out. I am starting a
new job and may not be able to continue the newsletter.
Let me know if you can help. The Newsletter Editor
must be appointed by the President.

John Mark Mobley, Editor
Glenside Color Computer Club

CoCo3/HDB-DOS/NitrOS9 Adventures, Part 3 of 3
by Rich Bair

 I ended my last column with a promise of an
explanation of my NitrOS9 boot failure problems. The
short answer is, there appears to be a maximum size
for the OS9Boot file, and it's not directly related to the
amount of free system RAM.

 A lot of the clues I found were learned from studying
the mdir -e displays of the boots that did succeed. The
mdir list always starts off with the three modules that
are read from track 34 of the (real or virtual) floppy.
They are written (after some fudging) into the highest of
the 64 8K RAM blocks on a 512K CoCo, number 3F (in
hex), which is then mapped into the top 8K of the
system address space just like in DECB. But remember,
the 18 sectors of track 34 add up to only 4 1/2K of data.
So as not to waste system memory space, NitrOS tucks
the three modules right up under the GIME/IO page,
leaving about 3K still unused at the bottom of the 3F
memory block.

 Mdir doesn't mention this, but at this time the lowest
8K-memory block, number 0, is mapped into the bottom
of the system space to contain some of the various
system data structures.

 Once the track 34 modules are in place, the boot
module looks at the size of the OS9Boot file to decide
how many more blocks of RAM (maximum 4) to map in
for loading it. These will start with block 1, since 0 is
already taken for data, and will be mapped in as a unit
right under block 3F.

 So the mdir -e list continues with a list of the modules
in your bootfile, in the same order that you arranged
them. At the left of each item is the block number 1, but
if you pay attention to the addresses and sizes of the
individual modules, you will realize that by about the
fourth module you've moved out of block 1 and into
block 2. Mdir gives no hint of this, even as you move
into block 3, and most likely 4, and, remarkably, even
into the unused portion of block 3F! They're all called
block 1 by mdir.

 The mdir -e display is also a bit confusing because
the system blocks are listed from high system memory
locations to low, but the individual modules are ordered
from low to high. So the last module in the "block 1" list
actually is adjacent (more or less) to the first item in the
"block 3F" list above. Depending on their sizes, the last

several items in the "block 1" list may actually be in
block 3F!.*

 At this point you may be calculating "OK, 4 blocks in
'block 1' equals 32K, plus the 3K unused in block 3F
gives me a bootfile max of 35K (=$8C00)". I wish. But
another look at mdir shows that the bootfile doesn't start
at the very bottom of block 1. This is partly because
NitrOS9 purposely tucks the whole bootfile as high up in
memory as it can without bumping into the modules
already in block 3F. But in all except possibly one** of
my boots that have succeeded, I've never been able to
get the bootfile modules to start lower than $0A00 in
block 1, which takes away about 2 1/2K. In my
experiments the size maximum appears to be $8306, or
about 32 3/4K. This limit is not directly related to limited
system RAM, because the successful boots that are
only a page or two below the limit show 30 or so free
pages of system RAM (7K+).

 Because of this size limit, none of my successful
boots have contained all of the modules that I originally
planned to put in a single bootlist. So the remainder of
this discussion will deal with some of the issues
involved in making multiple NitrOS9 boots a reality.

 Setting up multiple DOS boots in HDB-DOS might at
first seem like a non-problem, because HDB-DOS does
accept a drive number parameter following the DOS
command. But remember that a bootfile on a virtual
floppy must be linked to the hard drive first, and the
DOS command doesn't do that. So if yesterday you
linked the bootfile on virtual drive 0 to the hard drive and
today you try a DOS 1 command, you're still going to
get your drive 0 OS9Boot file (after loading track 34
from drive 1).

 The next thing you might try is an autoexec program
located on each drive that links that drive's OS9Boot.
But the problem with that attempt is that in HDB-DOS
an autoexec file only runs on a DOS command if there
is NOT an OS boot on track 34 of that particular virtual
floppy. It would have been nice if the autoexec file
would kick in first, but it doesn't.

 So here's my solution: Remember from my earlier
column that I planned to have an autoexec on drive 0
that presented a menu screen on bootup. (This means I
do not put a NitrOS9 boot on drive 0, or the autoexec
won't run.) Then my menu presents choices such as
"Press 2 to boot NitrOS9 from virtual drive 2", and if that
option is chosen the menu program runs a short
program on drive 2 which links*** its bootfile and then
issues a DOS 2 command. Now the number of different
boots I can have is limited only by the amount of space
on the menu screen.

 At this point another problem crops up. Different boots
are likely to work best with different startup files, but
nitrOS9 expects that file to be in the hard drive root

4

directory, so how can you have more than one?

 The solution to this one is a bit more complicated. The
module that calls startup is sysgo, which is often
included in the OS9Boot file although it can be put in
the /dd root directory to save system memory. So at the
cost of a slightly larger bootfile, I created modified
versions of sysgo to include in the boot. Their files are
named sysgo2, sysgo3, etc. in my directories, but the
module name is still sysgo. Instead of looking for
"startup", these modules look for "startup2", "startup3",
etc., so that now there's no limit on how many startup
files I can have available in the hard drive root directory.
Sysgo is also the module that looks for an autoex file. I
haven't done it as of this writing, but the same kind of
modification could have each different boot look for its
very own autoex file.

 Incidentally, the sysgo module is also the one that
puts that scary message on the screen that says "**
DEVELOPMENT BUILD ** ** NOT FOR
DISTRIBUTION! **". While I was in a modifying mood, I
changed that text in sysgo to something more friendly.

 So my CoCo is now back to functioning in a way that
feels good to me. I'm sure challenges still await, but for
now I'm done with major modifications. If I have made
statements that you know to be wrong, or if you have
better solutions to some of these problems, please let
me know. I'll be happy to write up corrections or
additions.

 * After the boot process is finished and several
processes have requested and then released memory,
it gets even more complicated. A module larger than 8K
may be loaded into blocks that are not even
consecutive numbers. Mdir tells you only the number of
the starting block. But if the module is an active
process, pmap will tell you the rest.

 ** At one point in my investigations when I wasn't
documenting my steps very well, I printed out an mdir -e
that plainly shows a bootfile that loaded starting at
$0100 in block 1. That bootfile has all the same
modules as one of my successful boots that loads at
$0A00. I don't know what I was doing differently that
time, and I've been unable to duplicate that result. If any
reader can give me any clues as to what could cause
that difference I would be very interested, as it could
potentially allow a bootfile 2 1/4K larger than my
apparent maximum.

 *** The LINK.BAS program distributed with HDB-DOS
has two functions, and is designed to be used only once
on each floppy disk. Besides linking the bootfile (it
assumes the floppy is already os9gen-ed) it creates an
RS-DOS partition and directory from track 16 up (except
for track 34). Strangely, though, it doesn't tell the OS9
partition that half its space has been taken away. (I
added lines to my full version to correct this oversight.)

But for the purposes described above, only a small
portion of the program is needed. I leave it to the reader
to study the BASIC program and find the lines that
accomplish the linking.

 Rich can be contacted at mgdoc1@sbcglobal.net

Real Programmers Code of Conduct
Submitted by: Kip Koon

Author Unknown

 Real programmers don't write specs -- Users
should consider themselves lucky to get any
programs at all and take what they get.

 Real programmers don't comment their code. If
it was hard to write, it should be hard to read.

 Real programmers don't write application
programs, they program right down on the bare
metal. Application programming is for feebs who
can't do systems programming.

 Real programmers don't eat quiche. They eat
Twinkies, and Szechuan food.

 Real programmers’ programs never work right
the first time. But if you throw them on the
machine they can be patched into working in
only a few 30-hour debugging sessions.

 Real programmers don't write in Fortran. Fortran
is for pipe stress freaks and crystallography
weenies.

 Real programmers never work 9 to 5. If any real
programmers are around at 9 am, it's because
they were up all night.

 Real programmers don't write in BASIC.
Actually, no programmers write in BASIC, after
the age of 12.

 Real programmers don't document.
Documentation is for simps who can't read the
listings or the object deck.

 Real programmers don't write in Pascal, or Bliss,
or Ada, or any of those pinko computer science
languages. Strong typing is for people with weak
memories.

 Real programmers know better than the users
what they need.

 Real programmers think structured programming
is a communist plot.

 Real programmers don't use schedules.
Schedules are for manager's toadies. Real
programmers like to keep their manager in
suspense.

 Real programmers think better when playing
adventure.

I found the above at http://www.psych.usyd.edu.au/pdp-
11/rp.html while I was perusing some PDP-11
information on the web recently. As I read this “Real
Programmers’ Code of Conduct, I busted out laughing
in my office in Mickey D’s and I thought of my many
friends I finally met in person at this year’s CoCoFEST,

http://www.psych.usyd.edu.au/pdp-11/rp.html
http://www.psych.usyd.edu.au/pdp-11/rp.html

5

so I just had to submit this to the Glenside Color
Computer Club Newsletter for publication! It is hilarious
as long as you don’t take it literally of course. Can
anyone relate to the environment these programmers
must have been in when programming the monstrous
min-frames and main-frames of yesteryear? I would
love to hear your stories! Starfleet Out! Qaplah! End
Transmission!

Donkey Kong Remixed
Review and Walkthrough

by: Richard Goedeken

As a child of the 80s, I've always had a keen interest in
all kinds of video games. I played arcade games as a
kid, and I recall playing Donkey Kong a few times,
though I never tried to master it. When Sock Master
originally released his CoCo 3 Donkey Kong port in
2007, I no longer owned any real Tandy hardware on
which I could play it, but I started building a meta-
emulator system called VGMuseum, which eventually
grew to contain over a dozen open source emulators
capable of playing thousands of games. In 2012 I set up
a VGMuseum system at my workplace, and since then
many colleagues have found and played their favorite
games from yesteryear.

One colleague in particular (I'll call him EDC), spent lots
of time honing his Donkey Kong skills as a kid, and I
really enjoyed watched him play arcade Donkey Kong
on the VGMuseum. I had never before seen anyone
reach the “Pie” level.

When Donkey Kong Remixed was released this
summer, I knew that I had to get it running at the office
to get EDC's opinion and see the new levels. I got it
running with MESS, and we started playing a few
games per day for stress relief and fun. Soon we got
hooked. We began a quest to play and defeat each
level.

Now, after playing hundreds of games in this quest to
complete Donkey Kong Remixed, I cannot overstate my
opinion of this game: it's absolutely brilliant. Sock
Master's original Donkey Kong port for the CoCo 3 in
2007 is a masterpiece. Not only is it the best arcade-
style game ever made for the Color Computer 3, it is the
best port of arcade Donkey Kong for any 8-bit machine.
All of the DK releases for the Commodore 64 were bad.
Even the Colecovision port, which I have played
extensively and was considered to be great at the time,
pales in comparison to Sock Master's.

But Donkey Kong Remixed takes it to the next level. Not
only is it a technical masterpiece, but the new levels
show real creativity and balance. However it is not for
the tame at heart. It is true to the spirit of Donkey Kong,
as seen even in the latest titles from Nintendo. It is
incredibly hard and it forces you to practice and learn in
order to advance. The arcade Donkey Kong (and

Remixed) games are not pure platformers (like the Wii
U game, focused only on jumping mechanics and
timing), but blend the illusion of chance with an evil
machine using coordinated actors to strike you down at
any moment. You must use tactics and quick reflexes to
make your way through each scene.

As EDC says, this game is rigged. It certainly appears
that way at first. But once you learn its ruthless rules
and how to circumvent them, you can beat it. In order to
defeat this game however, you must be prepared to rise
above.

Options

The original Sock Master Donkey Kong allowed the
player to select options in several different categories
before playing the game, similar to DIP switch settings
on an arcade machine. Donkey Kong Remixed has the
same categories as the original, but some new options.

You can select either 3, 5, 7, or 9 lives per game, and
select the score at which you will be given one extra life.
The Level Order can be set to Remix A, Remix B, or
Classic. This determines the order in which you will play
the scenes. There are more Display Modes (Palette
Types) in the Remixed game than the original, including
one RGB, two slightly different Composite palettes, and
a stylized PMODE 4 (red/blue) option. That last one is a
nice touch, and shows Sock Master's attention to detail.
The difficulty setting allows for either Easy or Normal
play, though in my opinion these should be called Hard
and Really Darn Hard instead.

The Scenes

The arcade Donkey Kong game was notable for many
reasons. When it was released in 1981, it was the most
complex arcade game made. Not only was Donkey

6

Kong the first game to contain a storyline that is shown
graphically as the player completes the levels, but it
was also the first game for which the development of
the storyline preceded any programming work.

The arcade game contains 4 Scenes, each of which can
played at different Levels of difficulty, increasing as the
player advances. The Remixed game adds 6 new
Scenes to the game. In both the Remix A and Remix B
level orders, the player must complete 11 levels in order
to see all 10 unique game Scenes.

I believe that the Remix A order is the most pure arcade
experience, as it nicely blends the new Scenes in with
the old ones and introduces the new Scenes gradually.
The Remix B order gives you 5 out of the 6 new Scenes
at the beginning (when the difficulty is lower), so it's nice
for those who wish to see and play the new levels
without quite so much difficulty.

In the Level Order lists below, the “L” number before
each Scene name gives the difficulty of that level when
the game has been set to the Easy mode.

Remix A Level Order
1: L1 Original “Barrels” (tilted red girders)
2: L1 Original “Rivets” (flat blue girders)
3: L2 New “Gumball Machine” (domed girders)
4: L2 Original “Elevators” (bouncing springs)
5: L2 New “Rivets” (flat blue girders)
6: L3 New “Barrels” (reverse tilted red girders)
7: L3 Original “Factory” (pies + conveyor belts)
8: L3 New “Elevators” (center start)
9: L3 New “Rivets and Elevators” (with switch)
10: L4 Original “Barrels”
11: L4 New “Factory” (two flaming oil drums)
12: L4 New “Gumball Machine”
13: L4 Original “Elevators”

Remix B Level Order
1: L1 New “Gumball Machine”
2: L1 New “Elevators”
3: L1 New “Rivets”
4: L2 New “Barrels”
5: L2 New “Factory”
6: L2 Original “Elevators”
7: L2 New “Rivets and Elevators”
8: L3 Original “Barrels”
9: L3 Original “Factory”
10: L3 New “Elevators”
11: L3 Original “Rivets”
12: L4 New “Gumball Machine”
13: L4 New “Factory”
14: L4 Original “Elevators”

Walkthrough

Original “Barrels”

This is the quintessential Donkey Kong level, played
and recognized more than any other, since it's the first.
But already the viciousness of this game is on full
display. Even an experienced player can end up losing
lives (sometimes several!) on this level if he lets his
guard down. To win this level, your goal is to climb onto
the platform at the top upon which Pauline is held
captive.

The first lesson to be learned here is the necessity of
being quick and precise. There is no time to lose, and
all of the levels are easier if you get through them
quickly. To do this you must 'hit' onto the ladders by
pressing up on the joystick at precisely the right
moment in time. If you're just a little too early or too late
you'll miss the ladder and waste precious time. The
same goes for getting off of the ladder: you must move
the joystick to your desired walking direction (left or
right) at the right instant to get off the ladder without
moving too early and getting stuck or too late and
wasting time.

Balancing against the need for speed, you must also
use tactical positioning techniques in this level to avoid
being clobbered by the barrels. Here's your first hint of
the devious nature of this game. Imagine that there is
an evil genius controlling the rolling barrels. At each
point where a barrel encounters a ladder going down
(including broken ones), the hidden genius may tell the
barrel to either continue rolling down the platform, or to
turn and go down the ladder. In most cases the barrel
will just roll on by. But if you are standing or walking
towards the ladder with a position and speed such that
the barrel will kill you if it turns, then the evil genius will
roll a dice and decide whether or not to kill you. It

7

seems that at least 75% of the time, it will. The game is
rigged.

In order to strategically counter this behavior, you must
not race the barrels past the ladders. Keep an eye on
the barrels above, and if you are approaching a ladder
at the same time as a rolling barrel above, stop and wait
by the side of the ladder. If the barrel goes down, you
can jump straight up and let the barrel go underneath
you. If it continues on the girder above, you can resume
walking. Similarly, you should never stop while climbing
up a ladder and wait for a barrel to pass by on the girder
overhead. In most cases, it will kill you.

Original “Rivets”

When you win this level, it shows the “victory” scene
from the arcade game: Donkey Kong will end up on his
head and Mario will be reunited with his lovely Pauline.
To do this, you must remove (by walking or jumping
over) each of the 8 yellow rivets.

This level is the first to feature the fireballs. In general,
they are not very aggressive. They do tend to move
towards Mario, but they don't pursue him relentlessly,
and often switch directions as though they forgot where
they were going. You can take advantage of this by
getting relatively close to them to take out the rivets in a
desirable order. But don't try to jump over them unless
it's an emergency, because they will often switch
directions and kill you when you jump them. The
fireballs cannot cross over missing rivets, so you can
box them in to certain areas of the level for your
advantage.

The fireballs appear at random locations on this level,
so you must choose your path based on the order in
which they appear. One strategy for this scene is to go

back and forth, collecting both rivets from each girder
before going up. Another effective strategy is to gather
all of the rivets in one vertical column, cutting off the
side of the level from the center, and then go back down
to take out the other side.

When you win this level you will see an extra animation:
the girders fall down smoothly to land at the bottom.
This animation is a special feature of “DK Remixed” and
was not in the arcade game.

New “Gumball Machine”

In the Remix A level order, this is the first new level and
almost certainly the hardest one out of the first 11. It is
also one of the most brilliantly designed. Take a good
look at Mario reaching his goal in this picture, because
you're unlikely to see it again any time soon.

Notice the two central gaps between girders in this
level: at each gap, the barrels falling down from the
sides can either continue in the same direction that they
were previously going (left or right), or slow down and
switch directions. While waiting on the girder below, you
need to know in which direction the barrels from above
will go, to take evasive action. Luckily, the game gives
you a clue. When a barrel is going to switch directions,
it will slow down just a little as it comes to the end of the
girder. By watching carefully, you can learn to judge if
the barrel will switch direction or not.

There are two hammers on this level, placed so you can
grab them when you're on the girders beneath the
central gaps. The hammer can be useful here, but it can
also be a double-edged sword, so you must use it
carefully. You cannot climb ladders or jump while you
have the hammer, so you'll be stuck to one girder for
some time after you take it. Also, the hammer will only

8

smash objects which are exactly above or in front of
you, in the alternating flashing hammer head squares. If
you stand directly underneath a central gap, the barrels
coming from above can fall diagonally in between the
two hammer head areas, and kill Mario. It's better to
stand under one of the girders and face the center. The
hammer has another problem as well. When it shuts off,
it leaves you helpless, but you can't jump before it shuts
off. Learn to estimate the duration of the hammer power
so that you can move to safety before it goes away.

You must also jump over the central gaps twice, and
they are bigger than you might think, so it's easy to
jump too early and miss the other side. Train yourself to
delay the jump until you're about to walk off the edge.

Sometimes, after you jump over the first gap, you may
be confronted by a wave of many barrels coming at you.
If they are spaced far enough apart, you may avoid
them by jumping. But if they are spaced irregularly then
they will certainly kill you, so don't be afraid to jump
back across the gap to the left to miss them before
continuing.

Sometimes it's worthwhile to pick up the upper hammer
in this level, especially if lots of barrels are in play. If you
smash them, you can rack up a lot of points. But you'll
also notice that when you have the hammer, they
barrels will usually choose to fall away from you (it's
rigged). You can use this to your advantage by running
to the left side of the girder, so that the barrels will build
up on the right side of the level and you'll have an
easier time getting up the ladder when the hammer
finishes.

There's one final nasty effect on this level: watch out for
that broken ladder just to the right of the top center gap.
If Kong has just released a barrel before you jump this
gap, it will almost always go down the ladder and kill
you.

Original “Elevators”

This is the third level in the arcade game, and it's fairly
straightforward to play. Go up one ladder, wait until the
fireball starts down the ladder on the right, then jump
onto the elevator, ride it up, then jump over to the top
platform. Wait until the fireball starts up a ladder and
then go down the other one to collect the hat for some
points. Then jump onto the second (downward) elevator
and then the platform to the right. Jump over one more
platform to the right and then wait and time your jumps
just right to avoid the springs raining down from above.
Make sure to avoid the fireball and time your jumps
again to jump up and to the left, and climb the ladders
to the top girder with Kong.

The last part of this level is a little tricky. After climbing
the ladder to the top platform, move just a few steps to
the left as the springs whiz by. Wait until a spring is
flying right over your head and walk to the left. Walk
past the ladder a bit so that you're positioned just like in
the screenshot above. Then wait for the next spring to
fly at you, and as it's going overhead, walk to the right
and up the ladder. You must hit the ladder on your first
try. If you miss the ladder by pressing up too soon, don't
try to walk right and hit it again; your only chance is to
go back to the safe spot on the left and then wait for
another chance.

9

New “Rivets”

The second new level, this one is also quite difficult and
requires some strategy to defeat. An earlier mid-July
release of DK Remixed had a “feature” whereby Mario
could jump from the smallest platform on the right to the
one just below it without dying, which made this level
very easy. Only the top two rivets had to be removed to
defeat Kong and win! Unfortunately Sock Master
removed this “feature”, and now it is necessary to get all
of the rivets to complete the level.

Start by taking out the 3 rivets in the leftmost column.
Then jump onto the middle platform (with the hammer)
and try to lure the fireballs up to you. Wait and get the
hammer at the right time and then kill as many fireballs
as possible. With luck, they will respawn on the left side
of the board and you'll be safe from them. Get the two
lower rivets on the right. After walking over the second
one, the platforms will fall out from underneath you.
React quickly, and you can jump back to the right to
safety, as shown here:

Climb down the ladder to the bottom, run over and
collect the purse (without jumping), then jump up on top
of the long platforms that you just dropped. From here,
jump over to the platform on the right and then go up
the ladders to get the final rivet on top.

New “Barrels”

This scene is very similar to the very first one, except
the ladders are arranged so that you need to run down
the girders and then climb up long ladders in order to
progress upwards. It plays very similarly to the first
level, and you just need to be careful with your position
to avoid getting killed by barrels coming down the
ladders. Overall it's not too hard.

10

Original “Factory”

Most arcade players know this as the “pie” level, though
officially the things that look like pies are actually pans
of cement moving through a factory. In the Easy setting
of Remix A, this is the first level which will give you 800
points for each item that you collect, so it's good for
your score to get a few of them if possible.

The conveyor belts can switch directions, and pies can
appear from the ends at any time, so there is a big
element of chance when you climb onto the conveyors
in this level. It's common to get swarmed by pies and
fireballs when you're on the lower conveyor belt. If this
happens, you can pick up a lot of points by grabbing the
hammer and smashing them. When walking against the
direction of travel of the conveyor belt, you will move
very slowly. You can gain ground faster by jumping. It's
often necessary to jump to reach the ladder if the
conveyor belt is going the wrong way. To do this,
immediately push up on the joystick when you're in the
air jumping past the ladder, and let the conveyor carry
you to the ladder. You'll start climbing as you pass it.

Once you reach the top of this level you're pretty much
home free. You have to go up to Pauline's platform from
the ladder on the right, but you can get there from either
side of Kong. Once you reach the top, just let the
conveyor push you to one side (it won't throw you off)
and then wait until it switches directions. Then run up
close to Kong (but don't touch him or you'll die), and
wait until the conveyor pulls you to Pauline's ladder,
then run up it to win.

New “Elevators”

This level is very similar to the original Elevators level,
except you start on the big platform in the middle
instead of on the left. Begin by going all the way to the
left and climbing up the ladders, then going to the right.
You must jump onto the second elevator from the top
platform, otherwise you probably won't be able to make
it to the upper small platform to the right. The timing of
the jumps in this level is a little tighter than the original
level, and you have to be more attentive to the lateral
position of the springs, because they vary more in their
left/right position than in the original level.

You need to complete the top part of this level in the
same way as the original; run to the left, past the ladder
to Pauline, and wait for another spring to pass overhead
before running right, then go up the ladder to win.

11

New “Rivets and Elevators”

This level is kind of crazy. There are so many different
things going on here. Start by running to the right,
snatch the purse, and get the two bottom rivets on the
right. On the middle platform it's good to use one or
both of the hammers to take out the fireballs, which
conspire to make this a difficult level. You can also walk
over the leftmost rivet on top while you have the
hammer to drop this platform and kill the fireballs
underneath.

Next, go down the small ladder on the left and take out
the final rivet of the bottom four to drop these two
platforms down. As on the first new Rivets level, you'll
have to get the rivet and then quickly jump back to the
left as the platforms start falling, to avoid death. Go
down the ladder to the very bottom and then jump up on
top of the two platforms that you just dropped. Jump up
to that switch on the left. (Yep, it's a switch. Brilliant!)
The elevators will change directions. Run over to the
right (avoiding the fireballs) and ride up the elevator to
the top section of this level. You must remember to start
here by first getting both rivets on the right, otherwise
you will not be able to finish the level.

After getting the top right rivet as shown above, go
down, then to the left (again avoiding the fireballs), and
get the last two rivets on the left to win. Winning this
Scene involves a lot of luck regarding where the
fireballs appear and how they move, so don't get too
discouraged. It's not quite as hard as it looks, but it's no
cakewalk either.

New “Factory”

The last new level is also very creative. I've only played
it a few times, but I've had good luck by running up to
the floating platforms on the right side. The fireballs
cannot follow you there, so you have some natural
protection. Feel free to grab the hammer on the

12

penultimate conveyor belt to rack up some points and
get rid of the pies. Once you get to the top conveyor you
can use the same technique as in the original Factory
level to easily reach the platform with Pauline.

Conclusion

As it should be clear by now, Donkey Kong Remixed is
not an easy game for a casual gamer. If you're looking
easy wins, you're likely to be overly frustrated by this
one. It is not nice. It forces you to confront your inner
limitations, learn, and grow in order to advance. But it is
extremely satisfying when you make it to a new level. If
you yearn to experience a brand new CoCo gaming
masterpiece, inspired by one of the greatest arcade
games from the dawn of the gaming era, Donkey Kong
Remixed cannot be missed. If you have a few (dozen)
hours to invest and pretty good reflexes, you might even
complete the quest and win all 10 of the Donkey Kong
Remixed scenes.

New Multi-Pack Prototype
by John Mark Mobley

Jim Brain of Retro Innovations has designed a new
multi-pack prototype and brought it to the Vintage
Computer Festival Midwest (VCFMW). Neil Blanchard
and Jim O’Keefe tested the prototype. It worked about
95% of the way. The one issue they found may be an
issue with other hardware. The new multi-pack
prototype is controlled by configurable logic such as a
Complex Programmable Logic Device (CPLD). So
making changes to the logic may not require a board
redesign.

Jim Brain (right) with Retro Innovations

New Multi-Pack Prototype

(Left to right) Jim O’Keefe, Neil Blanchard,

and Walter Miraglia

Overflow Logic
by John Mark Mobley

During the 1980s many cars had mechanical
odometers. They would roll over to zero after 100,000
miles. So they would count up to 99999.9 miles and if
you drove 0.1 mile more it would read 00000.0. This is
an example of overflow. Computers do something
similar with overflow logic.

If an 8-bit add overflow occurs, then you can likely just
do a 16-bit add in place of an 8-bit add, and you will get
the correct answer. Table 1 shows how many bits are
required to get the necessary precision. This is not
packed BCD, it is just binary.

Often you just want to compare two numbers and
branch if A>B. In this case you do not need to store the
results, so you can ignore the overflow condition and
move on.

Computers can add signed or unsigned integers using
the same add instruction. When the add is done, the

13

microprocessor will adjust flags in the Condition Code
Register (CC or CCR). You, the programmer, need only
pay attention to the flags that are related to the type of
math you are doing, either signed or unsigned.

Bytes Bits Signed
Base 10 Digits

Unsigned
Base 10 Digits

1 8 2 2

2 16 4 4

3 24 6 7

4 32 9 9

5 40 11 12

6 48 14 14

7 56 16 16

8 64 18 19

16 128 38 38

32 256 76 77

64 512 153 154

Table 1: Bits to Digits (Ex: 8 bits equal about 2 digits)

Signed Overflow Logic.

The condition code register has an overflow flag or V
flag that is used to indicate a signed overflow. The
condition code register has a negative flag or N that is
used to indicate that a signed number is negative. If the
most significant bit of a signed number is set, then the
number is negative.

The yellow highlighted areas below represent a 3-bit
signed overflow.

Signed 3-bit Add (Carry In = 0)

 -4 -3 -2 -1 0 1 2 3

-4 -8 -7 -6 -5 -4 -3 -2 -1

-3 -7 -6 -5 -4 -3 -2 -1 0

-2 -6 -5 -4 -3 -2 -1 0 1

-1 -5 -4 -3 -2 -1 0 1 2

0 -4 -3 -2 -1 0 1 2 3

1 -3 -2 -1 0 1 2 3 4

2 -2 -1 0 1 2 3 4 5

3 -1 0 1 2 3 4 5 6

Table 2

C Code BASIC 6809 ASM Logic Gate

& AND AND And Gate

| OR OR Or Gate

! NOT COM Inverter

Table 3: C, BASIC, ASM and Logic Gate Notation

Add B to A
R=A+B;
8-bit Overflow = (A7 & B7 & !R7) | (!A7 & !B7 & R7)
Overflow = (SignOfA & SignOfB & !SignOfResults) |
(!SignOfA & !SignOfB & SignOfResults)
Overflow = ((A < 0) & (B < 0) & (R >= 0)) | ((A >= 0) &
(B >= 0) & (R < 0));

If the following statements are true, then the overflow
flag is cleared (V=0). A positive number plus a positive
number is a positive number. Pos + Pos = Pos. A
negative number plus a negative number is a negative
number. Neg + Neg = Neg.

Example 8-bit signed add overflows to a 16-bit result:
 Dec: 127 + 127 = 254
 Hex: 0x7F + 0x7F = 0x00FE

Example 8-bit signed add overflows to a 16-bit result:
 Dec: (-128) + (-128) = (-256)
 Hex: 0x80 + 0x80 = 0xFF00

Signed 3-bit Subtract Col-Row (Carry In = 0)

 -4 -3 -2 -1 0 1 2 3

-4 0 1 2 3 4 5 6 7

-3 -1 0 1 2 3 4 5 6

-2 -2 -1 0 1 2 3 4 5

-1 -3 -2 -1 0 1 2 3 4

0 -4 -3 -2 -1 0 1 2 3

1 -5 -4 -3 -2 -1 0 1 2

2 -6 -5 -4 -3 -2 -1 0 1

3 -7 -6 -5 -4 -3 -2 -1 0

Table 4

Subtract B from A
R = A – B;
Overflow = (A7 & !B7 & !R7) | (!A7 & B7 & R7)
Overflow = (SignOfA & !SignOfB & !SignOfResults) |
(!SignOfA & SignOfB & SignOfResults)
Overflow = ((A < 0) & (B >= 0) & (R >= 0)) | ((A >= 0) &
(B < 0) & (R < 0));

If the following statements are true, then the overflow
flag is cleared (V=0). A positive number minus a
negative number is a positive number. Pos - Neg = Pos.
A negative number minus a positive number is a
negative number. Neg - Pos = Neg.

Example 8-bit signed sub overflows to a 16-bit result:
 Dec: 127 – (-128) = 255
 Hex: 0x7F - 0x80 = 0x00FF

Example 8-bit signed sub overflows to a 16-bit result:
 Dec: (-128) – 127 = -255
 Hex: 0x80 - 0x7F = 0xFF01

14

Unsigned Overflow Logic.

The condition code register has a Carry flag or C flag
that is used to indicate an unsigned overflow.

The yellow highlighted areas below represent a 3-bit
unsigned overflow.

Unsigned 3-bit Add (Carry In = 0)

 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 8

2 2 3 4 5 6 7 8 9

3 3 4 5 6 7 8 9 10

4 4 5 6 7 8 9 10 11

5 5 6 7 8 9 10 11 12

6 6 7 8 9 10 11 12 13

7 7 8 9 10 11 12 13 14

Table 5

Add B to A
If the carry flag is set (C=1) after the add/adc is
complete, then the result has overflowed.

Example 8-bit unsigned add overflows to a 16-bit result:
 Dec: 255 + 255 = 510
 Hex: 0xFF + 0xFF = 0x01FE

The yellow highlighted areas below represent a 3-bit
unsigned overflow or signed result.

The orange highlighted areas below represent a 3-bit
unsigned overflow or signed overflow.

Unsigned 3-bit Subtract Col-Row (Carry In = 0)

 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 -1 0 1 2 3 4 5 6

2 -2 -1 0 1 2 3 4 5

3 -3 -2 -1 0 1 2 3 4

4 -4 -3 -2 -1 0 1 2 3

5 -5 -4 -3 -2 -1 0 1 2

6 -6 -5 -4 -3 -2 -1 0 1

7 -7 -6 -5 -4 -3 -2 -1 0

Table 6

Subtract B for A
If the carry flag is set (C=1) after a sub/sbc, then the
result is a signed negative number. This is technically
an unsigned overflow.

If the carry flag is set and the negative flag is clear (C=1
and N=0) after a sub/sbc, then a signed overflow has
occurred.

CC Flags Results

C=0 Unsigned results

C=1 and N=1 Unsigned overflow or signed results

C=1 and N=0 Unsigned overflow and signed overflow

Table 7

So subtracting unsigned numbers can give a signed
result.

8-bit Example 1 (unsigned results):
 Dec: 255 - 0 = 255
 Hex: 0xFF - 0x00 = 0xFF (C=0)

8-bit Example 2 (unsigned overflow or signed results):
 Dec: 1 - 2 = (-1)
 Hex: 0x01 - 0x02 = 0xFF (C=1, N=1)

8-bit Example 3 (unsigned overflow and signed 8-bit
overflow):
 Dec: 0 - 255 = -255
 8-bit Hex: 0x00 - 0xFF = 0x01 (C=1, N=0)
 16-bit Hex: 0x0000 – 0x00FF = 0xFF01 (C=1, N=1)

If you are expecting signed results, then you should
probably use signed math to begin with. That way there
is no question on how to view the results.

Signed Overflow Logic and the Neg Command

Many operations can set the overflow flag in the
condition code register.

Example:
 lda #-128
 nega
 bvs OverflowErrorHandler01

A signed byte can only go from -128 ($80) to +127
($7F). The negative of -128 should be +128 but that
answer cannot be stored in a signed byte. So it is an
overflow. The answer it gives is -128 ($80). The correct
answer is +128 ($0080). You can trap this error using
the BVS (Branch Overflow Set) command.

Vintage Computer Festival Midwest (VCFMW)
by John Mark Mobley

I got DriveWire running on my Linux Mint MATE Laptop
and demonstrated Donkey Kong Remix. I got some
positive comments from people saying that they liked
this version of the game.

John Mark Mobley Demo-ing Donkey Kong Remix

15

Assembly 32-bit Compare Subroutine
by John Mark Mobley

Most of the branch instructions rely on flags being set in
the condition codes in order to determine if the branch
is to occur. It is like an “IF” statement in BASIC.

Ex: BASIC
 100 A=128
 110 IF CARRY=1 THEN 130.
 120 A=0
 130 PRINT A
 140 RETURN

Ex Assembly 1
 PrintValue lda #128 ; A=128
 bcs PV130 ; Branch Carry Set
 lda #0 ; A=0
 PV130 jsr PrintUnsignedDec8Bit
 rts ; Return

Ex Assembly 2
 PrintValue lda #128 ; A=128
 bcs > ; Branch Carry Set
 lda #0 ; A=0
 ! jsr PrintUnsignedDec8Bit
 rts ; Return

In the Ex Assembly 2 I use “>” and “!” in place of the
address label “PV130”. “>” looks forward to the first “!”
and “<” looks backward for the first “!”. This notation
works in the Lost Wizard Assembler “LWASM”.
“LWASM” is part of Lost Wizard Tools or “LWTools” See
Table 1 for a list of branches.

Mnemonic Description

BCC Branch on Carry Clear

BCS Branch on Carry Set

BEQ Branch on Equal

BGE Branch on Greater than or Equal to Zero

BGT Branch on Greater

BHI Branch if Higher

BHS Branch if Higher or Same

BLE Branch on Less than or Equal to Zero

BLO Branch on Lower

BLS Branch on Lower or Same

BLT Branch on Less than Zero

BMI Branch on Minus

BNE Branch Not Equal

BPL Branch on Plus

BRA Branch Always

BRN Branch Never

BVC Branch on Overflow Clear

BVS Branch on Overflow Set

Table 1: Branch Mnemonics and Descriptions

The condition codes are set, cleared or unaffected by
the various preceding instructions. Table 2 shows what
flag settings are required to allow the branch to be
taken as opposed to skipped.

Mnemonic Equation Type

BCC, BHS C=0 Simple, Unsigned

BCS, BLO C=1 Simple, Unsigned

BEQ Z=1 Simple, Unsigned, Signed

BGE N xor V = 0 Signed

BGT Z or (N xor V) = 0 Signed

BHI C or Z = 0 Unsigned

BLE Z or (N xor V) = 1 Signed

BLS C or Z = 1 Unsigned

BLT N xor V = 1 Signed

BMI N = 1 Signed

BNE Z = 0 Simple, Unsigned, Signed

BPL N = 0 Simple

BRA 1 Unary

BRN 0 Unary

BVC V = 0 Simple

BVS V = 1 Simple

Table 2: Branch Instruction Summary (8-bit Offset)

Mnemonic Complement

BCC, BHS BCS, BLO

BCS, BLO BCC, BHS

BEQ BNE

BGE BLT

BGT BLE

BHI BLS

BLE BGT

BLS BHI

BLT BGE

BMI BPL

BNE BEQ

BPL BMI

BRA BRN

BRN BRA

BVC BVS

BVS BVC

Table 3: Branch and its Complement

The compare instructions set the condition codes
needed to select any branch. The compare instructions
in the 6809 can do an 8-bit or 16-bit compare
depending on whether the register you are comparing is
an 8-bit or 16-bit register. The compare instructions can
compare two unsigned numbers or two signed numbers
automatically, meaning you do not have to tell it in
advance what number system you are using. However,
you must choose the correct branch instruction to match
either unsigned or signed math. See Table 4. An 8-bit or
16-bit compare with zero can usually be done without
doing a compare with zero. See the lower half of Table
4. The Test instructions only set/clear the N, V and Z
flags, which is adequate to do an 8-bit compare with
zero. Because the C flag is not cleared by the test
instruction, some unsigned branches will not work
correctly, but the lower half of Table 4 gives some ideas
on how to get around this.

16

BASIC C Code

6909 ASM
Unsigned

6809 ASM
Signed

> > BHI BGT

>= >= BHS, BCC BGE

= == BEQ BEQ

<= <= BLS BLE

< < BLO, BCS BLT

<> != BNE BNE

> 0 > 0 BNE BGT (See Note 1)

>= 0 >= 0 BRA !!! BPL

= 0 == 0 BEQ BEQ

<= 0 <= 0 BEQ BLE (See Note 1)

< 0 < 0 BRN !!! BMI

<> 0 != 0 BNE BNE

Note 1: Make sure V=0
The following commands clear the V flag:
ANDA, ANDB, ANDCC #$FD, BITA, BITB, CLR, CLRA,
CLRB, CMPA #0, CMPB #0, CMPD #0, CMPS #0,
CMPU #0, CMPX #0, CMPY #0, COM, COMA, COMB,
DAA, EORA, EORB, LDA, LDB, LDD, LDS, LDU, LDX,
LDY, ORA, ORB, SEX, STA, STB, STD, STS, STU, STX,
STY, SUBA #0, SUBB #0, SUBD #0, TST, TSTA, TSTB

Table 4: Unsigned and Signed Branches

Example 8-bit compare:
 lda NS8
 cmpa #100
 bgt Skip101

Example 8-bit compare with zero
 lda NS8
 bgt Skip101

Example register-less 8-bit compare with zero
 tst NS8
 bgt Skip101

Example 16-bit compare
 ldx NS16
 cmpx #-1 ; #-1= #$FFFF
 bgt Skip102

Example 16-bit compare with zero
 ldx NS16 ; if X2>0 goto Skip102
 bgt Skip102 ;

Example 32-bit compare
 ldx NS32 ; Signed 32-bit number
 ldu XS32 ; Signed 32-bit number
 jsr Cmp32 ; IF [X]>[U] GOTO Skip103
 bgt Skip103 ; “

Example 32-bit compare with zero
 ldx NS32 ; Signed 32-bit number
 jsr Tst32 ; IF [X]>0 GOTO Skip103
 bgt Skip103 ; “

Example 32-bit test for plus or minus
 tst NS32 ; Signed 32-bit number
 bpl Skip103 ; IF NS32 >= 0

If you want to do a 32-bit compare, you can do a
subtract instruction, and three subtract with carry
instructions. At this point the condition codes are set for
Carry, Negative, and Overflow, but the Zero Flag is only
set for the most significant 8-bits of the results. Now you
can “or” all the bytes of results together and the Zero
Flag will be set to a 32-bit test for zero, but doing so
may change the value of the Overflow Flag, and the
Negative Flag. So you need to save the other flags
while you change the zero flag. See Listing 1 for an
example of how this can be done.

2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0

E F H I N Z V C

Table 5 Condition Codes

Condition Code Flags
 E =Entire Flag
 F =FIRQ Mask
 H = Half Carry
 I = IRQ Mask
 N = Negative Flag
 Z = Zero Flag
 V = Overflow Flag
 C = Carry Flag

Example branch if Half Carry Set
 tfr cc,b ; Transfer Condition Code to B
 bitb #%00100000 ; Test Half Carry Flag
 bne Skip104 ; Branch if Half Carry Set

The BRN (Branch Never) and LBRN (Long Branch
Never) are another way to do a no-operation (nop). You
can use them as code space fillers, you can use them
to erase branches, and you can use them in delay
loops.

BRA (Branch Always) and BRN (Branch Never) can be
used to debug code. They can also be used in self-
modifying code.

I once had a program that cleared the “A” accumulator
with a CLRA instruction and then did a BCS (Branch
Carry Set) but the branch never worked. Then I figured
out that the CLRA instruction cleared the “A”
accumulator and the Carry Flag, so I changed the
instruction from CLRA to LDA #0 and my code started
working. Such a small change in my code made a big
difference in the outcome. If you work with it every day
you will likely develop a knack for it. Otherwise you can
rely on a lookup table of instructions and affected
condition codes.

17

Listing 1:

* Name: math32.asm, math32.bin, MATH32.BIN

* Purpose: To write a compare routine to handle 32-bit numbers

* By: John Mark Mobley and William Astle

* Date: 07-21-2015

* Run Environment: Tandy Color Computer 1

* Emulator: XRoar

* RAM: 16k

* ROM: Disk Extended Color BASIC

* Development Environment: IBM Compatible PC, Linux, LWTOOLS, and ToolShed

* Build Script:

* #!/bin/bash

* lwasm math32.asm -b --list=math32.lst -omath32.bin

* decb copy -2 -b -r math32.bin cocotest.dsk,MATH32.BIN

* decb dir cocotest.dsk:0

* makewav -r -c -nMATH32 -2 -b -k -omath32.cas math32.bin

*

 pragma cescapes

 org $3A00

;Reserve variable space in RAM

N1 rmb 4

N2 rmb 4

*---|----1----|----2----|----3----|----4----|----5----|----6----|----7----|----8

*

* Start... Main Control Section

*

Start lda #0 Print to screen

 sta $006F "

 ldx #N1 ; N1 = #$00000000

 ldd #$0000 ; "

 std ,x ; "

 ldd #$0000 ; "

 std 2,x ; "

 ldu #N2 ; N2 = #$00000000

 ldd #$0000 ; "

 std ,u ; "

 ldd #$0000 ; "

 std 2,u ; "

 jsr Cmp32

 rts

*---|----1----|----2----|----3----|----4----|----5----|----6----|----7----|----8

*

* Cmp32... 32 bit compare [x]-[u].

* Compare the 32 bit word pointed to by x from the 32 bit word pointed to by u.

* Works for signed and unsigned numbers

* Works with two unsigned numbers by setting the Condition Code (CC) for

* bhi, bhs (bcc), beq, bls, blo (bcs), bne

* or two signed numbers by setting the ccr for

* bgt, bge, beq, ble, blt, bne, bpl, bmi, bvc, bvs

* The only trick is preserving the value of CC.N and CC.V while adjusting CC.Z

* This function is reentrant tolerant (you may call it from an interrupt)

* Return result in CC (Flags affected: N, Z, V and C).

* Z: Set if result = 0x00000000 (32-bit zero)

* V: Set if two's complement overflow occurs as a result of operation

18

* C: Set if result needs a borrow (for unsigned numbers it is set if [x]<[u])

* N: Set if results.bit31 is set (set if the two's complement result is

* negative)

*

* Unsigned vs. Signed

* +-------+--------+----------+--------+

* | | | ASM | ASM |

* | BASIC | C Code | Unsigned | Signed |

* +-------+--------+----------+--------+

* | > | > | bhi | bgt |

* | >= | >= | bhs, bcc | bge |

* | = | == | beq | beq |

* | <= | <= | bls | ble |

* | < | < | blo, bcs | blt |

* | <> | != | bne | bne |

* +-------+--------+----------+--------+

*

* Branch Instruction Summary (8-bit offset)

* +----------+--------------------+--------------------------+------------+

* | Mnemonic | Equation | Type | Complement |

* +----------+--------------------+--------------------------+------------+

* | bcc, bhs | C = 0 | Simple, Unsigned | bcs, blo |

* | bcs, blo | C = 1 | Simple, Unsigned | bcc, bhs |

* | beq | Z = 1 | Simple, Unsigned, Signed | bne |

* | bge | N xor V = 0 | Signed | blt |

* | bgt | Z or (N xor V) = 0 | Signed | ble |

* | bhi | C or Z = 0 | Unsigned | bls |

* | ble | Z or (N xor V) = 1 | Signed | bgt |

* | bls | C or Z = 1 | Unsigned | bhi |

* | blt | N xor V = 1 | Signed | bge |

* | bmi | N = 1 | Simple | bpl |

* | bne | Z = 0 | Simple, Unsigned, Signed | beq |

* | bpl | N = 0 | Simple | bmi |

* | bra | 1 | Unary | brn |

* | brn | 0 | Unary | bra |

* | bvc | V = 0 | Simple | bvs |

* | bvs | V = 1 | Simple | bvc |

* +----------+--------------------+--------------------------+------------+

*

* Example:

* ldx #N1 ; signed 32-bit value

* ldu #N2 ; signed 32-bit value

* jsr Cmp32 ; if N1 >= N2 then goto Skip3

* bge Skip3 ; "

*

Cmp32 pshs d ;

 ldd 2,x ; subtract least significant words

 subd 2,u ; "

 pshs d ; save results for 24-bit zero test (on the stack)

 ldd ,x ; subtract most significant words

 sbcb 1,u ; "

 sbca ,u ; "

 tfr cc,a ; accumulator a = cc (E,F,H,I,N,Z,V,C)

 orb ,s+ ; perform a 24-bit zero test

 orb ,s+ ; "

 beq > ; branch to not clear the Z flag

 anda #%11111011 ; clear Z flag in accumulator a

19

! tfr a,cc ; cc = accumulator a

 puls d ;

 rts ;

*---|----1----|----2----|----3----|----4----|----5----|----6----|----7----|----8

*

* Tst32... 32 bit test of [x].

* Test the 32 bit word pointed to by x.

* Works for signed and unsigned numbers

* Works with one unsigned number by setting the Condition Code (CC) for

* beq, bne

* or one signed numbers by setting the ccr for

* bgt, bge, beq, ble, blt, bne, bpl, bmi

* The only trick is preserving the value of CC.N and CC.V while adjusting CC.Z

* This function is reentrant tolerant (you may call it from an interrupt)

* Return result in CC (Flags affected: N, Z, and V).

* Z: Set if result = 0x00000000 (32-bit zero)

* V: Cleared

* N: Set if bit31 is set (set if the two's complement result is negative)

*

* Unsigned vs. Signed

* +-------+--------+----------+--------+

* | | | ASM | ASM |

* | BASIC | C Code | Unsigned | Signed |

* +-------+--------+----------+--------+

* | > 0 | > 0 | bne | bgt |

* | >= 0 | >= 0 | bra !!! | bpl |

* | = 0 | == 0 | beq | beq |

* | <= 0 | <= 0 | beq | ble |

* | < 0 | < 0 | brn !!! | bmi |

* | <> 0 | != 0 | bne | bne |

* +-------+--------+----------+--------+

*

* Example:

* ldx #N1 ; signed 32-bit value

* jsr Tst32 ; if N1 > 0 then goto Skip3

* bgt Skip3 ; "

*

Tst32 pshs d ;

 tst ,x ; Set/clear N, V, and Z

 tfr cc,b ; accumulator b = cc (E,F,H,I,N,Z,V,C)

 lda 1,x ; perform a 24-bit zero test

 ora 2,x ; "

 ora 3,x ; "

 beq > ; branch to not clear the Z flag

 andb #%11111011 ; clear the Z flag in accumulator b

! tfr b,cc ; cc = accumulator b

 puls d ;

 rts

 end Start

20

See you next year: April 23 & 24, 2016
HERON POINT CONVENTION CENTER

645 West North Avenue
Lombard, IL 60148

645 Building on the lower level
Saturday Setup Time 7 am,

Saturday FEST Time 9 am to 5 pm,
Saturday Supper Time 5 pm to 7 pm,

Saturday Evening Social Time 7 pm to 11:30 pm,
Sunday Worship Service Time 8 am,

Sunday FEST Time 9 am to 3 pm,
Sunday Close-Up Time 3 pm to 5 pm

Calendar of Events

by
John Mark Mobley and Salvador Garcia

Glenside Color Computer Club, Inc. Business Meetings
Thursday, October 8, 2015
Thursday, November 12, 2015
Thursday, December, 10, 2015
7:00 PM to 10:00 PM CDT
Schaumburg Public Library
130 South Roselle Road
Schaumburg, IL, USA
Skype access available via: john.mark.mobley

Saturday & Sunday Sept 26-27, 2015
Retropalooza
Arlington, TX USA
Link:
https://www.facebook.com/pages/Retropalooza/171779
462982186

Saturday and Sunday Oct 17-18, 2015
Portland Retro Gaming Expo
Portland, OR, USA
Link: http://www.retrogamingexpo.com/

Friday, Saturday and Sunday Nov 13-15, 2015
Syntax DemoParty
Melbourne, Australia
Link: http://www.syntaxparty.org/

Friday, Saturday and Sunday Dec 4-6, 2015
World of Commodore 2015
Toronto, Ontario, Canada
Link: http://www.tpug.ca/category/woc/

Be sure to visit our Website to see up to date
information on upcoming events. http://glensideccc.com

Here are the 5 "W's"

WHO? 1) Glenside Color Computer Club, Inc.
PRESENTS

WHAT? 2) The 25th Annual "Last" Chicago CoCoFEST!
WHEN? 3) April 23 & 24, 2016

(Sat. 9 am-5 pm; 8 pm-midnight - Sun. 9 am-3 pm)
WHERE? 4) Fairfield Inn & Suites Lombard

645 West North Avenue
Lombard, IL 60148

(Near the intersection of IL-355 and North Avenue)
(Same location as 2015!)

Overnight room rate:
$89.00 plus 11% tax ($98.79 Total)

Call 1-630-629-1500 for reservations.
You must ask for the Glenside "CoCoFEST!" rate.
>>> YOU MUST REGISTER UNDER "CoCoFEST!" <<<
>>> TO GET THIS RATE <<<

WHY? 5)
A. To provide vendor support to the CoCo
Community
B. To provide Community support for our CoCo
Vendors
C. To provide educational support to new users.
D. TO HAVE AN OUTRAGEOUSLY GOOD TIME!!!

And now, the "H" word.
HOW MUCH? All Attendees - General Admission
Both days: $10.00 1st - $5.00 2nd & more
Sunday Only: $5.00 1st - $5.00 2nd & more

******* Children 12 and under - FREE *******

For further information, general or exhibitor, contact:
Tony Podraza, GCCCI Robert Swoger, GCCCI
847-428-3576, VOICE 224-236-5194, VOICE
tonypodraza@gmail.com rswoger@aol.com

Please note the new starting times, 9 AM, not 10 AM.

https://www.facebook.com/pages/Retropalooza/171779462982186
https://www.facebook.com/pages/Retropalooza/171779462982186
http://www.retrogamingexpo.com/
http://www.syntaxparty.org/
http://www.tpug.ca/category/woc/
http://glensideccc.com/
mailto:tonypodraza@gmail.com
mailto:rswoger@aol.com

